Люминофоры — общий обзор 1


люминесценция

Люминесценция — это свечение вещества, не связанное с нагреванием. Такое свечение чаще всего можно увидеть в огнях ночной рекламы (которую по традиции называют «неоновой»). Люди сталкиваются с явлением люминесценции буквально на каждом шагу светятся таблички «вход» и «выход» в кинотеатрах и театрах, экраны телевизоров и мониторов, на некоторых приборах светятся цифры и стрелки. А еще светятся морские волны ночью и светлячки в лесу.

Во многих лампах свет испускают ртутные пары, а энергию атомы ртути получают за счет электрического разряда. Если давление паров ртути невелико, лампа слабо светится бледно-синим светом, но зато она интенсивно излучает в невидимой ультрафиолетовой области (l = 254 нм). Ультрафиолет убивает микробов, поэтому такие лампы называются бактерицидными; их устанавливают в больницах и поликлиниках и периодически включают для стерилизации помещения. Трубки этих ламп делают из специального стекла, пропускающего ультрафиолетовый свет.

люминесцентная лампаЕсли трубку для лампы сделать из обычного стекла, но покрыть ее изнутри специальным составом – люминофором (в переводе – «несущий свет»), получится лампа дневного света. Люминофор, поглощая невидимый и вредный для глаз ультрафиолет, сам начинает светиться. Лампы дневного света часто имеют приятный желтоватый оттенок, приближающий его к солнечному; соответственно бывают люминесцентные лампы дневного, белого, тепло-белого и холодно-белого света. Эти лампы значительно экономичнее ламп накаливания: современная 11-ваттная люминесцентная лампа дает света столько же, сколько 75-ваттная лампа накаливания! Срок службы люминесцентных ламп также в 2–2,5 раза больше. Еще одно преимущество – трубка люминесцентной лампы чуть теплая, о нее невозможно обжечься, значит, уменьшается опасность возгорания или оплавления пластмассового светильника. Но есть у люминесцентных ламп и неприятная особенность: в них содержится немного ртути, и когда такие лампы просто выбрасывают на свалку, где они бьются, то это приводит к загрязнению воздуха и почвы ядовитым металлом.
Если к парам ртути в лампе добавить под давлением инертный газ, а трубку сделать из тугоплавкого кварцевого стекла, можно значительно повысить температуру в ней и получить лампу типа «горное солнце». Такие лампы используют в медицинских целях, а также для получения искусственного загара в зимнее время (особенно в северных районах России, где мало естественного солнечного ультрафиолета).

электролюминофор

Ртутные лампы высокого давления, наподобие тех, что применяют в кабинетах физиотерапии, используют и для освещения улиц. Эти лампы двойные: внутри у них кварцевая лампа, а снаружи – большой стеклянный баллон, также покрытый изнутри люминофором, который излучает свет, несколько напоминающий дневной. Такие лампы могут иметь мощность в десятки киловатт; их используют для освещения площадей, стадионов, железнодорожных узлов – везде, где требуется создать хорошее освещение на большой площади. Для этой цели используют также ксеноновые лампы сверхвысокого давления.

натриевые лампыВ последние десятилетия для уличного освещения начали широко использовать натриевые лампы, дающие желтовато-оранжевый цвет. Свет в этих лампах испускают пары натрия (иногда с добавками других металлов). Свет этих ламп довольно далек от дневного, но зато они экономичнее, так как при той же затрате электроэнергии дают значительно большую освещенность.

В веществах-люминофорах могут происходить различные физические процессы. Чтобы люминофор светился, его надо возбуждать, т.е. подводить энергию. Делать это можно разными способами. Самый распространенный способ возбуждения – светом, видимым или ультрафиолетовым (фотолюминесценция).

Электроны с избыточной энергией могут излучить свет практически сразу – за время порядка стомиллионной доли секунды после поглощения возбуждающего фотона. В таком случае излучение называется флуоресценцией – от названия минерала флюорита CaF2, у которого впервые обнаружено это явление.

Флуоресцируют синеватым светом кристаллы нафталина на солнечном свету, зеленоватым светом – растворов флуоресцеина или эозина (эти красители иногда добавляют к шампуням и экстрактам для ванн), ярко светятся на солнечном свету особые краски бакенов, цветных афиш, деталей одежды, фломастеров (маркеров). Это так называемые дневные флуоресцирующие красители – органические соединения, поглощающие ультрафиолетовые и синие солнечные лучи и излучающие зеленые, оранжевые или красные. Сильной флуоресценцией обладает хинин, соединение с исключительно горьким вкусом. Он используется как лекарство от малярии, его также добавляют к различным тонизирующим напиткам. Малые добавки хинина придают напиткам чуть горьковатый привкус, а также… способность ярко светиться под действием ультрафиолетовых лучей!
Флуоресцирующие красители входят в состав многих моющих средств. Здесь они выполняют роль оптических отбеливателей. Их назначение – преобразовать ультрафиолетовую часть солнечного света в голубой, синий и фиолетовый свет. Таким образом они «подправляют» чуть желтоватый цвет ткани так, что она кажется чисто белой. Этот прием известен с древности, только вместо синтетических флуоресцирующих красителей раньше подкрашивали ткань синькой.

Иногда фотолюминесценция не исчезает сразу после прекращения действия источника возбуждения, а может продолжаться несколько секунд, минут, а иногда и часов. Это фосфоресценция (от латинского phos – свет и phoros – несущий). Фосфоресценцию органических молекул можно наблюдать только в специальных условиях в лабораториях. А вот неорганические фосфoры – это те самые люминофоры, которыми покрыты изнутри лампы дневного света. Чаще всего это различные оксиды, сульфиды, фосфаты и силикаты. Кроме этих веществ, в состав люминофора вводят активирующие добавки сурьмы, марганца, олова, серебра, меди и других тяжелых металлов. Примером могут служить (Zn,Sr)3 (PO4)2·Sn, BaSi2O5·Pb. В мировом выпуске всех классов люминофоров их доля составляет примерно 90%.
От ламп дневного света не требуется, чтобы они светились после отключения от сети. Но бывают люминофоры с длительным послесвечением, их используют для покрытия циферблатов и стрелок измерительных приборов. Если такой люминофор длительного действия «насветить» несколько минут на солнце, то потом в темноте в течение нескольких часов он будет светиться – сначала ярко, потом все более тускло.

Люминофоры для экранов телевизоров, мониторов, осциллографов относятся к катодолюминофорам – они возбуждаются пучком электронов (раньше их называли катодными лучами). Еще в конце 19 в. были найдены вещества, ярко светящиеся под действием электронов. В настоящее время по масштабам мирового производства (сотни тонн в год) катодолюминофоры занимают второе место после ламповых люминофоров. Некоторые из них перестают светиться после прекращения возбуждения очень быстро; если бы, к примеру, люминофор на экране телевизора светился хотя бы секунду после того, как с него ушел «рисующий» изображение электронный луч, картинка на экране была бы полностью смазана. Другие люминофоры, наоборот, должны обладать послесвечением. Ими покрыты экраны с «памятью» (в некоторых осциллографах, радиолокационных трубках). Для получения цветного изображения используют люминофоры со специальными активаторами. Например, в цветных телевизорах синее свечение экрана может давать ZnS·Ag, зеленое – (Zn,Cd)S·Cu,Al, красное – Y2 (O,S)3·Eu. Разработаны и другие композиции, в которых сочетание трех основных цветов в различных соотношениях дает миллионы разнообразных оттенков. Используются они и при производстве компьютеров – для экранов цветных мониторов (если посмотреть в сильную лупу на белый экран, можно увидеть цветные светящиеся точки – пиксели). К катодолюминофорам близки ретгенолюминофоры, которыми покрыты экраны в рентгеновских кабинетах – они светятся под действием рентгеновских лучей. Кроме уже упомянутых люминофоров, здесь могут использоваться CaWO4, BaSO4·Pb и другие.

В отдельный класс выделяют электролюминофоры – вещества, светящиеся под действием электрического поля. Они непосредственно преобразуют электрическую энергию в световую, потребляя очень малую мощность и обладая очень большим сроком службы. Однако светимость электролюминофоров мала, поэтому их используют обычно для световой сигнализации. Например, надпись «выход», светящаяся зеленым светом в концертных залах, театрах и кинотеатрах, – это как раз пример электролюминофора.

Наконец, последний класс люминофоров – радиолюминофоры, свечение которых возбуждается излучением естественных или искусственных радиоактивных препаратов. Такие люминофоры могут светиться годами, а срок их работы часто обусловлен разрушающим действием радиации на люминофор. Радиолюминофоры сыграли в свое время огромную роль в изучении явлений радиоактивности: до изобретения электроизмерительных приборов (ионизационной камеры, счетчика Гейгера – Мюллера) ими покрывали небольшие пластинки и затем в полной темноте подсчитывали число вспышек на пластинке, чтобы определить интенсивность излучения от разных источников. Раньше радиолюминофором служил тетрацианоплатинат(II) бария Ba[Pt(CN)4]· 4Н2 О. Под действием радиации в нем возбуждается яркая желто-зеленая люминесценция. Сейчас используют значительно более дешевые люминофоры, например, активированный медью сульфид цинка. Раньше радиолюминофором – светящимся составом постоянного действия с примесью радиоактивного препарата покрывали стрелки и цифры часов. Из-за вредности (в основном для рабочих, занятых на производстве) такие часы сейчас не делают.

Особую группу светящихся веществ составляют соединения, испускающие свет за счет энергии химических реакций. Это явление называется хемилюминесценцией. Светиться могут гнилушки, светляки, некоторые морские одноклеточные организмы. Светятся и многие морские животные, обитающие как на поверхности моря, так и в его глубине. Это примеры биолюминесценции – свечения в живых организмах. Причина всех описанных явлений – химические реакции, идущие с выделением энергии. Обычно эта энергия выделяется в виде тепла, но в редких случаях часть ее переходит в световую. В живых организмах такие реакции (как и все другие) регулируются ферментами.

Известны и неферментативные химические реакции, в ходе которых наблюдается хемилюминесценция. Еще в 1669 алхимик из Гамбурга Хенниг Бранд случайно открыл белый фосфор по его свечению в темноте. Впоследствии химики выяснили, что белый фосфор легко испаряется, и светятся его пары, когда они реагируют с кислородом воздуха. В результате был открыт совершенно новый класс химических реакций.

Свечение паров фосфора, хотя и привело к важному научному открытию, не имеет практического значения.

Однако химики обнаружили, что при окислении некоторых органических веществ, например, перекисью водорода, энергия реакции почти со 100%-ной эффективностью преобразуется в световую. При этом наблюдается настолько яркая хемилюминесценция, что ее можно видеть даже при дневном освещении. Это явление используют, например, для производства игрушек и украшений. Их делают в виде прозрачных пластмассовых трубочек, в которых запаяна ампула с перекисью водорода, а также раствор дифенилового эфира щавелевой кислоты и флуоресцентный краситель. Если ампулу раздавить, эфир начнет окисляться, энергия этой реакции передается на краситель, который и светится. Его цвет может быть разным – оранжевым, голубым, зеленым – в зависимости от красителя. Чем быстрее идет реакция окисления, тем ярче свечение, но тем быстрее оно прекращается. Подбором компонентов получают яркое (можно читать в темноте) свечение, которое затухает в течение примерно 12 часов – для карнавала или дискотеки этого вполне достаточно.

Удивились!? Удивите своих друзей!

Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники